Course title: Interdisciplinary Research Fundamentals (Biochemistry and Biology)

Instructor: Masayuki Takahashi, PhD

Description: This course introduces the fundamentals of biology (biochemistry, cell biology).

Course objective: To help students acquire basic concepts of cell functions and biological macromolecules for deeper understanding of recent findings in biomedical research.

Goals: At the end of the course, students are expected to explain the molecular and cellular basis of life. Students will also learn how important biological discoveries were made and what kinds of experimental techniques are used.

Schedule: Monday 13:20-14:50 (May 4 – June 15, 2020)

Grading:

Final grade will be calculated, on a scale of 0-100, based on the following:

-	Class attendance (exercises and participation)		30%
-	Oral presentation		30%
-	Writing assignments (exam)		40%
	Tot	al	100%

X If the submitted report contains plagiarism from known documents (including information on the Internet), the grade of this class will be marked to be zero. In some cases, further disciplinary action may be subjected by the University.

References

MIT Open course "Introduction to Biology" (Video Lectures) https://ocw.mit.edu/courses/biology/7-012-introduction-to-biology-fall-2004/video-lectures/

*MIT Open course "Introductory Biology 2013" (Video Lectures) https://ocw.mit.edu/courses/biology/7-013-introductory-biology-spring-2013/video-lectures/

COURSE SCHEDULES

Week	Торіс	Key questions (or activities)	Reference
1	Discovery of gene by	What is life? How do living organisms	Lecture 6
	Mendel	reproduce offspring of similar character?	Genetics 1
		Mendel proposed that some factors	
		(genes), which control our characters,	
		are transmitted from one generation to	
		another without any modification.	
2	Cell division/chromosome	Living organisms proliferate and grow by	Lecture 7
	segregation/ genes	cell divisions, which are accompanied by	Genetics 2
		chromosome segregation. Mode of	
		transmission of chromosomes to	
		offspring suggests that chromosomes	
		bring genes.	
3	Protein function and	Cellular functions, such as production of	Lecture 3
	structure	energy and cell components as well as	Biochemistry
		transport of materials, are performed by	2
		proteins. Proteins are polymers of amino	
		acids and each has a particular structure	
		according to its amino acid sequence	
		and performs a specific function.	
4	DNA function and	Griffith and his successors identified	Lectures 10
	structure	DNA, a component of chromosome, as a	& 11
	(replication, transcription	genetic material. Its structure (double	Molecular
	& translation)	helix) was then determined by Watson	Biology 1 & 2
		and Crick. Crick proposed, from the DNA	
		structure, how genes on DNA are	
		reproduced and how they dictate our	
		characters via protein production.	
5	Cell and body structure	Our body is made by nice organization of	*Lecture 21
		many cells. Cells themselves are also	Development
		nicely organized for their function.	1
6	Cell differentiation and	How is our body produced from one	*Lectures 22
	stem cells	fertilized egg, and maintained and	& 23
		repaired during our life?	Development
			2, Stem cells
7	Final presentation	Oral presentation of research topics	
		(5-10 min/presentation)	
		(Final evaluation)	
		exercises and self-assessment	

講義名:Interdisciplinary Research Fundamentals (生化学、生物学)

講師: Takahashi Masayuki, PhD

コース: 生物学(生化学、細胞生物学)の基礎をカバーする。

コースの目的:

最近の生物医学分野の研究の進展を理解するために必須の生体高分子や細胞機能に関する基礎的な概 念を学ぶ

到達目標:

コース終了時には受講者は生命体の分子レベル、細胞レベルの基盤について説明することができる。 さらにどのように研究が進展してきたか、そして細胞の構造や機能を理解するために用いられる実験 技術についての知見が得られる。

講義日程:月曜日、午後1時20分一2時50分 (2020年5月4日-6月15日)

成績評価:

以下の項目配分に基づいて、最終成績を100点満点で計算する。

- 講義出席と参加、貢献度(小テスト、質問等) 30%
- 口頭発表(トピック紹介) 30%
- 筆記課題(テスト) 40%

計 100%

(注)提出レポートに既存の文献(インターネット上の情報を含む)からの剽窃・盗用が 発覚した際には、成績評価を0点とします。 場合によっては懲戒処分が本学から下される可能性があります。

参考文献

MIT Open course "Introduction to Biology" (Video Lectures) https://ocw.mit.edu/courses/biology/7-012-introduction-to-biology-fall-2004/video-lectures/

*MIT Open course "Introductory Biology 2013" (Video Lectures) https://ocw.mit.edu/courses/biology/7-013-introductory-biology-spring-2013/video-lectures/

講義スケジュール

週	テーマ	論題	参考文献 (章)
1	メンデルによる遺伝子の発見	生命とは何か? 生命体はどのような分	Lecture 6
		子メカニズムで自分に似た子孫を生殖す	Genetics 1
		ることができるのか?	
2	細胞分裂と染色体と遺伝子	生命体は細胞分裂により増殖する。細胞	Lecture 7
		分裂には染色体の複製と分離が起こる。	Genetics 2
		染色体は対になっているが、そのうちの	
		一つだけが子孫に伝わる。遺伝子も同様	
		であることから染色体が遺伝子を担って	
		いることが提唱された。	
3	タンパク質の役割と構造	多くの生体反応がタンパク質により、進	Lecture 3
		められていることが発見された。さらに	Biochemistry 2
		タンパク質がアミノ酸のポリマーである	
		こと、アミノ酸配列により特異的な構造	
		を取り、決まった生体反応を正確に進め	
		ることが分かった。	
4	DNA の役割と構造	DNA により生命体の性格が決まることが	Lectures 10 &
	(複製と転写・翻訳)	実証された。そして DNA が塩基のポリマ	11
		ーであること、二つの相補的な二本のポ	Molecular
		リマー鎖からなっていることが分かった。	Biology 1 & 2
		た。 Crick は DNA の二重鎖構造から、塩基 の相補性を用い、同じ DNA を複製できる	
		こと、DNA の塩基配列を用いてタンパク	
		「 こと、 DNA の塩茎配列を用いてクシバク 質のアミノ酸配列が決定されることを提	
		「貝のアミア酸化列が代定されることを提 「唱した。(Central Dogma)	
5	 細胞と体の構造	私たちの体は、良く組織立った細胞の集	*Lecture 21
		まりでできており、細胞自体も整った構	Development
		造になって、生体反応が秩序良く行われ	1
		るようになっている。	·
6	発生と stem cells	私たちは、一つの受精卵から始まってい	*Lectures 22 &
		る。どのように一つの細胞から複雑な体	23
		が出来上がっていくのかがわかりつつあ	Development
		る。また成人になった後も、stem cells が	2, Stem cells
		存在し、細胞の新陳代謝や傷の修復など	
		のために新しい細胞を作っている。	
7	最終発表	授業に関連したトピックについて口頭発	
		表 (5-10 分程度)	

(最終評価) 筆記試験	
-------------	--